
Erica Snider, Fermilab
on behalf of SciSoft Team
LArSoft 2021 Reference, July 8

Introduction to LArSoft

1

• Underlying principle of LArSoft
• The LArSoft Collaboration
• Operation of a single-phase LAr TPC
• Simulation and reconstruction in LArSoft
• Design principles and coding practices
• LArSoft physical design
• Code releases and distribution
• End-user / developer resources

Outline

2

Exploit the similarity in the geometry and readout schemes that are common to many
LArTPCs to create a set of infrastructure and algorithms for the simulation and
reconstruction of LArTPC data that can shared across detectors

• Use common data structures and interfaces
• Express detector-specific differences via configuration
• Write algorithms that work for any / many LArTPCs

As a result, dramatically reduce the cost of developing this software for experiments
that use LArTPC technology

Underlying principle of LArSoft

3

The LArSoft Collaboration

External software
projects

Experiments, laboratories, software projects collaborating to produce,
shared experiment-independent software for LArTPC simulation,
reconstruction and analysis

4

The LArSoft Collaboration

External software
projects

The LArSoft “project”: a Fermilab-based group that
● maintains / develops the architecture
● provides user support, software expertise, release management

5

The LArSoft Collaboration

External software
projects

The body of shared software is also referred to as “LArSoft”

6

Operation of a single-phase LAr TPC

7

Operation of single-phase LAr TPC

LAr volume

Cathode
plane

Electric field
Anode
planes 8

LAr volume

Cathode
plane

Electric field

Ionized Ar produces scintillation light.

“Flash” arrives at photo detectors
~10s of ns (...the “early” light, at least)

time →

pu
ls

e
he

ig
ht

→

9

Operation of single-phase LAr TPC

Operation of single-phase LAr TPC

LAr volume

Cathode
plane

Electric field

Ionized Ar produces scintillation light.

“Flash” arrives at photo detectors
~10s of ns (...the “early” light, at least)

time →

pu
ls

e
he

ig
ht

→

10

Operation of single-phase LAr TPC

LAr volume

Cathode
plane

Electric field

Neutrino interacts with
Ar nucleus

Charged secondaries
ionize the Ar

Electrons drift in the
electric field toward
anode wires

 vdrift ≈ 1 – few mm/μs

Max drift time ~ ms!!

Ionization
electrons

11

Operation of single-phase LAr TPC

LAr volume

Cathode
plane

Electric field

Neutrino interacts with
Ar nucleus

Charged secondaries
ionize the Ar

Electrons drift in the
electric field toward
anode wires

 vdrift ≈ 1 – few mm/μs

Max drift time ~ ms!!

Ionization
electrons

12

Operation of single-phase LAr TPC

LAr volume

Cathode
plane

Electric field

Neutrino interacts with
Ar nucleus

Charged secondaries
ionize the Ar

Electrons drift in the
electric field toward
anode wires

 vdrift ≈ 1 – few mm/μs

Max drift time ~ ms!!

Ionization
electrons

13

Operation of single-phase LAr TPC

LAr volume

Cathode
plane

Electric field

Neutrino interacts with
Ar nucleus

Charged secondaries
ionize the Ar

Electrons drift in the
electric field toward
anode wires

 vdrift ≈ 1 – few mm/μs

Max drift time ~ ms!!

Ionization
electrons

14

Operation of single-phase LAr TPC

LAr volume

Cathode
plane

Electric field

Ionization
electrons

Electrons pass through
induction planes.

 Induce (small)
 bipolar signals

time →

pu
ls

e
he

ig
ht

→

15

Operation of single-phase LAr TPC

LAr volume

Cathode
plane

Electric field

Electrons pass through
induction planes.

 Induce (small)
 bipolar signals

Ionization
electrons

time →

pu
ls

e
he

ig
ht

→

16

Operation of single-phase LAr TPC

LAr volume

Cathode
plane

Electric field

(Large) unipolar pulses
on collection plane wires

time →

pu
ls

e
he

ig
ht

→

17

Operation of single-phase LAr TPC

LAr volume

Cathode
plane

Electric field

The job of the reconstruction:
 To start with this...

 … …
wire 2

wire n1wire 0 ...

...

... ...

... ...

... ...

18

Operation of single-phase LAr TPC

LAr volume

Cathode
plane

Electric field

The job of the reconstruction:
 ...and get to this:

And to get here...

19

LAr volume

Cathode
plane

Electric field

Track

Shower

Shower

Track

...you need to reconstruct
this picture.

Operation of single-phase LAr TPC

20

LAr volume

Cathode
plane

Electric field

Track

Shower

Shower

Track

So now start from the raw
signals, and walk through
the general process, data
structures needed to
get here.

Operation of single-phase LAr TPC

21

22

Simulation and reconstruction
in LArSoft

What does LArSoft do? And what is in it?

Provides tools to carry out simulation,
reconstruction and analysis of LArTPC data.
(Note, analysis uses the output of any of the
steps in the workflow, but a discussion of analysis
is beyond the scope of this material.)

● Consider for instance, an event generation,
detector simulation, reconstruction workflow

Event generation

Geant4 simulation

Detector simulation

Reconstruction

A general generation – simulation –
reconstruction workflow

23

General generation-simulation-reconstruction workflow

Event generation

Geant4 simulation

Detector simulation

Reconstruction

Event generators

● Genie: GENIEGen module

○ Interfaces to Genie neutrino event generator
○ larsim/larsim/EventGenerator/GENIE/
○ See genie.fcl in that directory
○ More documentation on the NuTools wiki page,
○ https://cdcvs.fnal.gov/redmine/projects/nutools/wiki

● Single particles: SingleGen module
○ larsim/larsim/EventGenerator

● Cosmic ray generators: CORSIKA, CRY
○ larsim/larsim/EventGenerator

Others available via indirect common data exchange format,
e.g., NuWro

24

https://cdcvs.fnal.gov/redmine/projects/nutools/wiki

General generation-simulation-reconstruction workflow

Event generation

Detector simulation

Reconstruction

Geant4 simulation

Geant4 detector simulation

● Particle propagation simulation

● Models energy depositions in the detector

○ Rich, configurable models of particle
interactions, optical properties (including
detailed index of refraction, reflectivity,
etc.)

○ Can perform optical simulation at single
photon level

● The only simulation currently integrated with
LArSoft

25

General generation-simulation-reconstruction workflow

Event generation

Geant4 simulation

Reconstruction

Detector simulation

26

A separate workflow in itself

● Factorized into the following steps (implemented as
separate modules / partly combined in WireCell)

○ Ionization and scintillation light modeling from
energy depositions

○ Drift electron simulation

○ Anode region simulation, signal induction and
noise modeling, digitization

○ Photon transport and detection model,
including “S2 light” simulation for dual-phase
detectors

○ Optical signal induction, noise modeling and
digitization

General generation-simulation-reconstruction workflow

Event generation

Geant4 simulation

Detector simulation

Reconstruction

27

Three major paradigms, each with its own
variants, modules, workflows

● 2D clustering and view matching

○ Pandora multi-algorithm approach
○ TrajCluster 2D

● Image processing / deep learning techniques

○ Pixel-level track/shower tagging from 2D
images (code not yet fully available)

○ Hit-based track/shower discrimination

● 3D imaging

○ Wire-cell: tomographic charge matching
across wire planes in time slices

○ TrajCluster3D / Cluster3D: time / charge
matching across wire planes using hits.

Detailed simulation workflow in LArSoft

28

29

Simulation workflow

Beam simulation Flux file

Event generation Generated
Events

Ionization/scintillation
simulation

Energy deposition
simulation (Geant4) Energy deposits

Modified energy
deposits

Typically run as at least three
separately phases:

● “Beam” simulation
● Event generation
● Detector simulation and

response

The detector simulation and response can
also be run in several phases, as we will
show

Photon-detector
response

Electron detector
response

Simulated raw TPC data

Simulated raw PD data

Simulation stage Output data product

30

Simulation workflow

Beam simulation Flux file

Event generation Generated
Events

Ionization/scintillation
simulation

Energy deposition
simulation (Geant4) Energy deposits

Modified energy
deposits

Beam simulation:

● Generates neutrino flux hitting
the detector

● Simulated sources can
include accelerator, sun,
astrophysical sources, KDAR
sources, etc. (so not strictly
from accelerator beams)

The beam simulation is external to
LArSoft

Photon-detector
response

Electron detector
response

Simulated raw TPC data

Simulated raw PD data

Simulation stage Output data product

31

Lots of options available for the event
generator!!

Can run different generators using the same
flux files as input.

Simulation workflow

Beam simulation Flux file

Event generation Generated
Events

Ionization/scintillation
simulation

Energy deposition
simulation (Geant4) Energy deposits

Modified energy
deposits

Event generation

● Produces final state secondaries
from neutrino interactions within the
detector based on input flux
description

● For proton decays and
radiologicals, just generates decay
signatures

● Output is list of final state particles
in simb::MCTruth

Photon-detector
response

Electron detector
response

Simulated raw TPC data

Simulated raw PD data

Simulation stage Output data product

32

Simulation workflow

Beam simulation Flux file

Event generation Generated
Events

Ionization/scintillation
simulation

Energy deposition
simulation (Geant4) Energy deposits

Modified energy
deposits

Detector simulation and
response

● Given MCTruth, performs
all steps necessary to
produce simulated output
waveforms from detector

● Output waveforms typically
post-noise reduction, and
field / electronics response
deconvolution

Detector response is further
factored into separate steps

Photon-detector
response

Electron detector
response

Simulated raw TPC data

Simulated raw PD data

Simulation stage Output data product

33

Simulation workflow

Beam simulation Flux file

Event generation Generated
Events

Ionization/scintillation
simulation

Energy deposition
simulation (Geant4) Energy deposits

Modified energy
deposits

Detector response for electrons
● Field effects, noise, electronics

transfer function, etc.
● Output is fully simulated TPC

readout channel

Photon-detector
response

Electron detector
response

Simulated raw TPC data

Simulated raw PD data

Simulation stage Output data product

Electron drift simulation
(module ?)

Anode region /
electronic response
simulation (module ?)

sim::SimDriftedEl
ectronCluster

recob::Wire or
raw:RawDigits

Electron Response

34

Simulation workflow

Beam simulation Flux file

Event generation Generated
Events

Ionization/scintillation
simulation

Energy deposition
simulation (Geant4) Energy deposits

Modified energy
deposits

Detector response for photons:
● Photon transport, photo-detector

quantum efficiency, noise,
electronics transfer function, etc.

● Output is fully simulated
photo-detector readout channel

Photon-detector
response

Electron detector
response

Simulated raw TPC data

Simulated raw PD data

Simulation stage Output data product

Photon propagation

Photo-detector
response

sim::SimPhotons or
sim::OnePhoton

raw::OptDetWaveform or
OpDetPulse

Photo-detector response

35

Design principles
and coding practices

The basic philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Separation of framework and algorithm code
3. Use of standardized algorithm interfaces
4. Modularity
5. Design / write testable units of code
6. Document code in the source
7. Write code that is thread safe
8. Continuous integration

LArSoft design principles and coding practices

36

The basic philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Separation of framework and algorithm code
3. Use of standardized algorithm interfaces
4. Modularity
5. Design / write testable units of code
6. Document code in the source
7. Write code that is thread safe
8. Continuous integration

LArSoft design principles and coding practices

The foundation of the code sharing regime

Possible because the nature of LArTPCs allows
for the use of many common interfaces, with
differences expressed as differences in
configuration

Will expand on detector interoperability later...

37

The basic philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Separation of framework and algorithm code
3. Use of standardized algorithm interfaces
4. Modularity
5. Design / write testable units of code
6. Document code in the source
7. Write code that is thread safe
8. Continuous integration

LArSoft design principles and coding practices

● Critically important

● Allows use of LArSoft algorithm code
outside of art, such as:

− Lightweight analysis frameworks

■ Gallery, LArLite, ...

− Specialized development /
debugging environments

● Allows a future migration to another
production framework, should that be
needed

38

The basic philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Separation of framework and algorithm code
3. Use of standardized algorithm interfaces
4. Modularity
5. Design / write testable units of code
6. Document code in the source
7. Write code that is thread safe
8. Continuous integration

LArSoft design principles and coding practices

● Encapsulate algorithms, configuration, tools
and utilities into a layer that is independent
of the art framework (eg, no art::Handle<>
in algorithms)

● Requires adherence to proper coding
practices and physics designs

− Use modules to interact with
art::Event, obtain services, etc.

− Construct services such that the
service (the class registered with art)
handles art callbacks, but delegates all
the work to a “provider” that knows
nothing about art

− Pass event data and service providers
to algorithm code39

The basic philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Separation of framework and algorithm code
3. Use of standardized algorithm interfaces
4. Modularity
5. Design / write testable units of code
6. Document code in the source
7. Write code that is thread safe
8. Continuous integration

LArSoft design principles and coding practices

Provides a means to hide detector-specific details
behind common interfaces

Also allows layering of algorithms to build
sophistication

40

The basic philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Separation of framework and algorithm code
3. Use of standardized algorithm interfaces
4. Modularity
5. Design / write testable units of code
6. Document code in the source
7. Write code that is thread safe
8. Continuous integration

LArSoft design principles and coding practices

Just good coding practice…

Build sophistication by applying algorithms in a
layered, iterative structure.

41

The basic philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Separation of framework and algorithm code
3. Use of standardized algorithm interfaces
4. Modularity
5. Design / write testable units of code
6. Document code in the source
7. Write code that is thread safe
8. Continuous integration

LArSoft design principles and coding practices

Ensures that code operates as intended
Simplifies code integration

42

The basic philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Separation of framework and algorithm code
3. Use of standardized algorithm interfaces
4. Modularity
5. Design / write testable units of code
6. Document code in the source
7. Write code that is thread safe
8. Continuous integration

LArSoft design principles and coding practices

So that other people understand what your code is
supposed to do, and how to use it

So that you know what your code is supposed to do
and how to use six months after you wrote it…

Use Doxygen markup in source code comments

Include at a minimum the purpose of the file, how it
is used, pre-requisites, assumptions, etc.

43

The basic philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Separation of framework and algorithm code
3. Use of standardized algorithm interfaces
4. Modularity
5. Design / write testable units of code
6. Document code in the source
7. Write code that is thread safe
8. Continuous integration

LArSoft design principles and coding practices

New! (relatively)

Expect multi-threading to play an increasingly
important role

● To help control scaling of memory usage
● To adapt to the evolving computing

landscape

44

The basic philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Separation of framework and algorithm code
3. Use of standardized algorithm interfaces
4. Modularity
5. Design / write testable units of code
6. Document code in the source
7. Write code that is thread safe
8. Continuous integration

LArSoft design principles and coding practices

Ensures stability of the development environment

Allows rapid development cycles

Simplifies release management

45

The basic philosophies and rules that underlie code sharing in core LArSoft code

1. Detector interoperability
2. Separation of framework and algorithm code
3. Use of standardized algorithm interfaces
4. Modularity
5. Design / write testable units of code
6. Document code in the source
7. Write code that is thread safe
8. Continuous integration

LArSoft design principles and coding practices

Additions and changes will be made as needed to adapt to changes
in the computing landscape, or to better support code sharing

46

LArSoft Detector Interoperability
(#1 Design Principle)

47

LAr volume

Electric field

A\node
planes

MicroBooNE
2.2m x 2.5m x10m

DUNE far detector module
18m x 19m x 66m

LArIAT
0.4m x 0.47m x 0.9m

48

Detector interoperability of LArSoft software

Active volume of LAr
with uniform E-field...

● The cornerstone of LArSoft design and architecture

● Rests on common features of LAr TPC geometry, physics, data

...Digitized waveforms in multiple views
induced by motion or collection of ionization...

LAr volume

Electric field

MicroBooNE
2.2m x 2.5m x10m

DUNE far detector module
18m x 19m x 66m

LArIAT
0.4m x 0.47m x 0.9m

49

Detector interoperability of LArSoft software

...Digitized waveforms from of detected
scintillation light from multiple photo-detectors...

LAr volume

Electric field

A\node
planes

MicroBooNE
2.2m x 2.5m x10m

DUNE far detector module
18m x 19m x 66m

LArIAT
0.4m x 0.47m x 0.9m

50

Detector interoperability of LArSoft software

MicroBooNE
2.2m x 2.5m x10m

DUNE far detector module
18m x 19m x 66m

LArIAT
0.4m x 0.47m x 0.9m

...reconstructed signals, 2D and 3D
objects, measurements of
physical properties such as range
and dE/dx

LAr volume

Electric field

Shower

Track

Vertex

Allows definition of shared
data structures, interfaces,
workflow stages, and
ultimately, shared algorithms,
physics tools, utilities

51

Detector interoperability of LArSoft software

● Detector and time-dependent conditions data

− Geometry: use a generic interface to obtain geometry information
● Facilitated by

− Detector and data IDs defined at all levels
− Creation of tools for generic loops over geometric elements
− Strict avoidance of implicit geometrical assumptions in the code

− Similarly, use shared interfaces to calibration, electric field maps, conditions
information, etc.

● Implementations differ by back-end database schemas, other detector-specific details

52

Detector interoperability of LArSoft software

● Specify handling of many detector-dependent details via configuration (FHiCL files)

− Input geometry description

− Source for generic detector properties, LAr conditions and properties

− Back-end for calibration data

− Source and back-end for photon transport / detection maps

− Source and back-end for electric field map

− Etc.

● Detector-specific implementations currently required for
− Raw data noise removal and signal processing

− Electronics response in simulation and reconstruction

− Simulation of raw data digitization

53

Detector-specific elements

General disclaimer:
 In examining the code, you
may note that only a portion
currently adheres to these
principles.

We strongly encourage people
to adopt these practices for all
new code.

Separation of framework and algorithm
(#2 Design Principle)

54

Achieve separation by:
● Adhering to certain coding practices

− art service design pattern
− Restrictions on art module code

in order to create an art-independent layer for algorithms, configuration, (art) tools and
utilities

● Factoring I/O, art event data model (canvas) out of the art framework
− Event data model (via canvas) is available for use in the “art-independent” code
− Note that FHiCL and message service do not depend on art, so can also be

included directly in “art-independent” code

55

Separation of framework and algorithm

art service design pattern

A LArSoft service is a class, with a single instance managed by the framework, that performs
an operation. A service is used by LArSoft algorithms and art modules.

To be used in algorithm code, LArSoft services are factorized into two parts:
1. A “service provider” with no dependence on art that does the work of the service

a. Algorithm code interacts with the provider
b. The provider is passed in to algorithms

2. An “art service” that interfaces the provider with the art framework
a. This is the part that is registered with art at run-time

This factorization model allows service providers used and tested without
pulling in the art framework, and to be used in art-unaware environments

56

Separation of framework and algorithm

Examples of LArSoft Services
with this structure

● Geometry
● LAr properties
● Detector properties
● Access to databases for calibrations, channel status, etc.
● Photon visibility (part of predicting photo-detector response)
● ...

To write services from scratch, one can start with the examples in larexample repository

57

Separation of framework and algorithm

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/LArSoft_examples#Services

Restrictions on art module code

Treat modules as interfacing algorithms to the framework

An algorithm is a piece of code that:
● performs one single task, or a set of algorithms
● In principle, can be a component of many execution paths, and used in multiple modules

(cont on next slide)

58

Separation of framework and algorithm

A LArSoft algorithm must be able to perform its task using only:
● LArSoft data products and their associations (input and output data)
● Service providers
● FHiCL parameter sets
● Calls to message_service allowed

Write art modules that:
● Get configuration data from ParameterSet passed to module
● Get data products from, and put them into the event
● Get service instances
● Create algorithm instances (if they are classes)
● Call algorithm methods, passing data products, service providers, ParameterSet(s)

59

Separation of framework and algorithm

art
“art is the event-processing framework developed and supported by the
Fermilab Scientific Computing Division (SCD).

“The art framework is an application used to build scientific programs by
loading science algorithms, provided as plug-in modules; each experiment or
user group may write and manage its own modules. art also provides
infrastructure for common tasks, such as reading input, writing output,
run-time configuration, provenance tracking, message handling and
database access.”

The parts in bold are separate products, and are not formally part of the
event-processing framework code

60

Separation of framework and algorithm

http://www.fnal.gov/
http://computing.fnal.gov/xms

Gallery

gallery provides lightweight access to event data in art/ROOT files outside the art event
processing framework.

gallery is not an alternative framework; rather, it provides a library that can be used to write
programs that need to read (but not write) art/ROOT files. You must have access to the
ROOT dictionaries for the classes in a data file to use that data file. The availability of such
dictionaries is provided by the experiments.

gallery is built:

■ without the use of EDProducers, EDAnalyzers, etc., thus
■ without the facilities of the framework (e.g. callbacks from framework transitions, writing

of art/ROOT files).

Algorithm code may be called within code that uses Gallery for event access

61

Separation of framework and algorithm

Canvas
The canvas package is the infrastructure required for providing I/O operations for the full art
framework and the lightweight gallery framework. In particular, the ROOT dictionaries art
provides for experiments to use are located in canvas.

A tutorial is available at: https://github.com/marcpaterno/gallery-demo

Algorithm code may use Canvas internally to support data product associations

62

Separation of framework and algorithm

https://cdcvs.fnal.gov/redmine/projects/art
https://cdcvs.fnal.gov/redmine/projects/gallery
https://github.com/marcpaterno/gallery-demo

Notes on alternate frameworks
● Properly written LArSoft code can be ported to a new framework by providing a layer

of code that can get and put data products (which are just simple classes) in the
alternate event record; instantiate and pass service providers, and perform the
required functions at state transitions to keep the provider up to date; fill the
appropriate ParameterSet(s) from the new source of configuration data; interface as
needed with message facility

63

Separation of framework and algorithm

64

LArSoft physical design

LArSoft code

● Physical design follows from design principles

− Detector interoperability

− Separation of algorithm and framework interface code

− Modularity

65

Structural components of LArSoft

Core LArSoft
algorithm code

“LArSoft obj suite”

Other s/w
libraries

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

Other
library

interfaces

Pandora WireCell

Pandora
interface

WireCell
interface

“Core LArSoft code”

66

External Utilities Libraries

Experiment-specific
art-interface code

Experiment-specific algorithm
code (does not depend on art)

“Product
interface
code”

“External
algorithm
libraries”

Structural components of LArSoft

Core LArSoft
algorithm code
“LArSoft obj suite

Other s/w
libraries

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

Other
library

interfaces

Pandora WireCell

Pandora
interface

WireCell
interface

“Core LArSoft code”

67

External Utilities Libraries

Experiment-specific
art-interface code

Experiment-specific algorithm
code (does not depend on art)

LArSoft is not stand-alone code.

Requires at least experiment / detector-specific
configuration

Note that nothing in core LArSoft code depends
upon experiment code

Conceptual design of LArSoft code

Core LArSoft
algorithm code

“LArSoft obj suite”

Other s/w
libraries

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

Other
library

interfaces

Pandora WireCell

Pandora
interface

WireCell
interface

68

External Utilities Libraries

Organizing principle for LArSoft based on a layering of functionality, dependencies

Ideally, layers should only know about the interface to the layer below

Conceptual design of LArSoft code

Core LArSoft
algorithm code

“LArSoft obj suite”

Other s/w
libraries

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

Other
library

interfaces

Pandora WireCell

Pandora
interface

WireCell
interface

69

External Utilities Libraries

Neither LArSoft obj suite nor anything below it knows about or depends on art
(though LArSoft obj can use event model (canvas), message facility, FHiCL C++ interface)

This has interesting implications, which will be discussed later

Conceptual design of LArSoft code

Core LArSoft
algorithm code

“LArSoft obj suite”

Other s/w
libraries

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

Other
library

interfaces

Pandora WireCell

Pandora
interface

WireCell
interface

70

External Utilities Libraries

LArSoft built on top of art event processing framework.

It is possible to operate with gallery which provides lightweight access to
event data in art/ROOT files. Can read (but not write) these files via gallery.

The art event processing framework

Quick art tutorial

● Reads events from user-specified input source

● Executes workflow of tasks as configured via input FHiCL file
○ Operate on “data products” stored in event records

● Tasks (algorithms, event filtering, ...) carried out via user-specified
“modules” and other “plug-ins”

○ Dynamically-loaded
○ Can be user-written
○ Configurable via FHiCL files

● Output data products may be written to output file(s)

71

art
event

processing
framework

The art event processing framework

Three types of plug-ins

1. Modules
● The basic, scheduled elements within task workflows.

○ art calls pre-defined methods at specific times in the event loop
● Three types

○ Producer: may modify the event
○ Filter: can alter trigger path execution
○ Analyzer: may not modify the event

2. Services
● Classes with global scope that can be accessed within modules.

○ art calls registered methods at specific times in the event loop
3. Tools

● Functions or classes with module (or service) scope that have user-specified interface to
perform tasks

72

The art event processing framework

More information:

● The art documentation site: resources, detailed tutorials
○ https://art.fnal.gov/

● The art wiki: reference information, coding guidelines, issue tracker

○ https://cdcvs.fnal.gov/redmine/projects/art/wiki

● The FHiCL quick start guide
○ https://cdcvs.fnal.gov/redmine/documents/327

● The FHiCL-cpp wiki: C++ bindings
○ https://cdcvs.fnal.gov/redmine/projects/fhicl-cpp/wiki

73

https://art.fnal.gov/
https://cdcvs.fnal.gov/redmine/projects/art/wiki
https://cdcvs.fnal.gov/redmine/documents/327
https://cdcvs.fnal.gov/redmine/projects/fhicl-cpp/wiki

Structural components of LArSoft

74

Repositories
larcore
lardata
larreco

larevt
larsim
larana

lareventdisplay
...

larcorealg
larcoreobj
lardataalg
lardataobj

larpandora&
larpandora-
content

larwirecell

Core LArSoft
algorithm code

“LArSoft obj suite”

Other s/w
libraries

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

Other
library

interfaces

Pandora WireCell

Pandora
interface

WireCell
interface

External Utilities Libraries

The smallest build unit is the
repository

Structural components of LArSoft

75

Repositories
larcore
lardata
larreco

larevt
larsim
larana

lareventdisplay
...

larcorealg
larcoreobj
lardataalg
lardataobj

LArSoft obj naming convention
for repositories in the “LArSoft
suite”: ends in “obj” or “alg”

larpandora&
larpandora-
content

larwirecell

Core LArSoft
algorithm code

“LArSoft obj suite”

Other s/w
libraries

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

Other
library

interfaces

Pandora WireCell

Pandora
interface

WireCell
interface

External Utilities Libraries

ups and LArSoft

76

LArSoft is a collection of ups products.

One installed ups product instance per repository.

But not all ups products associated with LArSoft have a repository, such
as larsoft_data discussed in the next slide.

ups and LArSoft

77

Repositories
larcore
lardata
larreco

larevt
larsim
larana

lareventdisplay
...

larcorealg
larcoreobj
lardataalg
lardataobj

larpandora&
larpandora-
content

larwirecell

Core LArSoft
algorithm code

“LArSoft obj suite”

Other s/w
libraries

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

Other
library

interfaces

Pandora WireCell

Pandora
interface

WireCell
interface

External Utilities Libraries

A special ups product reserved for larger
configuration files (up to a few MB):
larsoft_data
Managed by LArSoft release managers

ups and LArSoft

78

Repositories
larcore
lardata
larreco

larevt
larsim
larana

lareventdisplay
...

larcorealg
larcoreobj
lardataalg
lardataobj

larpandora&
larpandora-
content

larwirecell

Core LArSoft
algorithm code

“LArSoft obj suite”

Other s/w
libraries

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

Other
library

interfaces

Pandora WireCell

Pandora
interface

WireCell
interface

External Utilities Libraries

“larsoft” ups
product serves as
an umbrella that
allows a single
setup command for
all of LArSoft

larsoft product
effectively depends
on everything, so
“setup larsoft ...”
sets up everything
in a binary-
compatible way.

Experiment code
Experiment repositories

MicroBooNE

 uBCore
 uBEvt
 uBReco
 ...

 uBObj

DUNE

dunetpc

SBND

 sbndcode

ICARUS

 icaruscode

Some experiment code may, strictly speaking, be art
independent.

Most (all but MicroBooNE) lack required repository
structure to build independently of art.

git repositories
in Redmine

Repositories in GitHub
under “SBN Software”
organization

https://sbnsoftware.github.io/
https://sbnsoftware.github.io/

Experiment code
Experiment UPS products

MicroBooNE
 uboonecode (umbrella product)
 uBCore
 uBEvt
 uBReco
 ...

 uBObj

DUNE

dunetpc

SBND

 sbndcode

ICARUS

 icaruscode

Except for MicroBooNE, umbrella products have the
same name as the repositories

Structural components of LArSoft

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

81

Experiment-specific
art-interface code art module

 art::Event
 art::ServiceHandle<service>
 art::Handle<data product>
 art::make_tool<tool type>
 …

The event class, modules,
services / service registry,
handles (all types), and
associated pre-processor
directives, etc., are all part of art
interface

The “art interface” code

Structural components of LArSoft

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

82

Experiment-specific
art-interface code

art module
 art::Event
 art::ServiceHandle<service>
 art::Handle<data product>
 art::make_tool<tool type>
 …

The event record, modules, services /
service registry, handles (all types),
and associated pre-processor
directives, etc., are all part of art
interface

The “art interface” code

Modules should be used to get services,
service-providers, parameter sets and
data products, and to create tools, which
should then be passed to algorithm code

art-independent Code

Core LArSoft
algorithm code

“LArSoft obj suite”

Other s/w
libraries

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

Other
library

interfaces

Pandora WireCell

Pandora
interface

WireCell
interface

83

External Utilities Libraries

Experiment-specific
art-interface code

Experiment-specific algorithm
code (does not depend on art)

Algorithms, service-providers, data products,
should never depend on any elements of
art interface (or the interface provided by
canvas)

Data and configuration should be passed
into and out of algorithms, service-providers,
other art-independent functions and classes.

art-independent Code

Core LArSoft
algorithm code

“LArSoft obj suite”

Other s/w
libraries

art
event

processing
framework

Core LArSoft-art interface
“LArSoft suite”

Other
library

interfaces

Pandora WireCell

Pandora
interface

WireCell
interface

84

External Utilities Libraries

Experiment-specific
art-interface code

Experiment-specific algorithm
code (does not depend on art)

Algorithms, service-providers, data
products, should never depend on any
elements of art interface

Data and configuration should be passed
into and out of algorithms,
service-providers, other art-independent
functions and classes.

Note: fhicl-cpp and
message_facility are
independent of art

● “art independent
code” may include
FHiCL parameter
sets,
message_facility
calls, but need not

Code that does not depend on art and all the attendant dependencies can:

• Be developed, built in a lightweight stand-alone environment

• Have easily constructed unit tests to check proper functioning

• Be used in alternate event processing / analysis frameworks and contexts

• Be used with art gallery

– Provides lightweight access to art/ROOT files outside of art
– Widely used both as analysis and development environment
– The entire LArSoft Obj suite can be used in gallery

More information at https://art.fnal.gov/gallery/

Why framework independence matters

85

https://art.fnal.gov/gallery/

86

Code releases and distribution

A release contains all LArSoft code, ups products in a frozen state for distribution

Several types of releases

• Production

• Integration

• Test release

• Release candidate

LArSoft releases

87

A release contains all LArSoft code, ups products in a frozen state for distribution

Several types of releases

• Production

• Integration

• Test release

• Release candidate

LArSoft releases

88

● Any release designated as “production” by an
experiment

○ Contents approved by the experiment

● Typically used for large-scale processing
campaigns

● Created on demand

● Retained indefinitely on disk

● Numbering: vxx_yy_zz, e.g., v08_22_00

Major version Minor version Patch version
Details on “LArSoft release naming and
retention policy” wiki page

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/LArSoft_release_naming_policy
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/LArSoft_release_naming_policy

A release contains all LArSoft code, ups products in a frozen state for distribution

Several types of releases

• Production

• Integration

• Test release

• Release candidate

LArSoft releases

89

● Any release designated as “production” by an
experiment

○ Contents approved by the experiment

● Typically used for large-scale processing
campaigns

● Created on demand

● Retained indefinitely on disk

● Numbering: vxx_yy_zz, e.g., v08_22_00

○ Extend numbering for updates:
vxx_yy_zz_aa, e.g., v08_22_00_01, ...Details on “LArSoft release naming and

retention policy” wiki page

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/LArSoft_release_naming_policy
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/LArSoft_release_naming_policy

A release contains all LArSoft code, ups products in a frozen state for distribution

Several types of releases

• Production

• Integration

• Test release

• Release candidate

LArSoft releases

90

● Created weekly, or on demand for special purposes

● Provides a stable code base for development that is close
to the head of repositories

● Contents approved via pull requests

○ Major changes also require approval at LArSoft
Coordination Meetings

● May be removed without notice after about a month
(though has never happened…)

● Numbering: vxx_yy_zz (same sequence as production
releases)

A release contains all LArSoft code, ups products in a frozen state for distribution

Several types of releases

• Production

• Integration

• Test release

• Release candidate

LArSoft releases

91

● Created to allow experiments to test a new product or
new produce version (e.g., Genie, Geant4, art (sometimes))
on top of a known release

● Identical to some base integration or production release
except for that product version + any adaptations
needed for integration

● Retained on disk until testing is completed

● Numbering: vxx_yy_zz_kk

Base release version Test release patch version

A release contains all LArSoft code, ups products in a frozen state for distribution

Several types of releases

• Production

• Integration

• Test release

• Release candidate

LArSoft releases

92

● Created to allow experiments to test a new major
version of LArSoft.

○ Sometimes (rarely), a major change to a critical
underlying product will trigger this condition

● Retained on disk until testing is completed

● Numbering: vxx_yy_zz_rcn

Target release version Release candidate version

A release contains all LArSoft code, ups products in a frozen state for distribution

Several types of releases

• Production

• Integration

• Test release

• Release candidate

LArSoft releases

93

The list of all LArSoft releases, the purpose, significant
changes listed on the “LArSoft release list” wiki page
(https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/LArSoft_release_list)

Each entry has a link to release notes for that release

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/LArSoft_release_list
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/LArSoft_release_list

LArSoft releases are distributed via two mechanisms

• cvmfs

– CERN virtual file system
– Appears as locally mounted disk area

• /cvmfs/larsoft.opensciencegrid.org/products/larsoft

• Binary and source tarballs

– Downloadable from scisoft.fnal.gov
• https://scisoft.fnal.gov/

– Instructions for installing, building (when needed) are linked from the release notes

LArSoft code distribution

94

https://scisoft.fnal.gov/

Every release is distributed in several build variants
• Operating system
• Combination of compiler version + other build flags
• Optimized versus debug versions

Distinguished during setup by
• The current operating system (or as specified in the setup command)
• Qualifiers specified in the setup command

More on this later

LArSoft code distribution

95

• “Supported platforms”

– Builds actively supported
– Code runs and works as intended (as reported by CI system)
– Source and binary distributions available on cvmfs and scisoft.fnal.gov

Currently includes:

• SL7

Supported platforms

96

• “Known to work”

– We know of someone (usually us!) who has succeeded in building and running
– LArSoft does not officially support builds or distribution

A special “best effort” category exists in this space
– Includes operating systems considered as important to LArSoft developer community
– Support on-demand builds, or regular builds after release of “supported platform”

distributions
– May or may not include CI system support

Currently includes:
• Ubuntu LTS 20: on-demand, no CI system support

Supported platforms

97

98

End-user / developer resources

Doxygen: http://nusoft.fnal.gov/larsoft/doxsvn/html/

• Auto-generated documentation from markup
embedded in source comments

Documentation

99

“File” view

http://nusoft.fnal.gov/larsoft/doxsvn/html/

Doxygen: http://nusoft.fnal.gov/larsoft/doxsvn/html/

• Auto-generated documentation from markup
embedded in source comments

Documentation

100

“Class” view

http://nusoft.fnal.gov/larsoft/doxsvn/html/

Doxygen: http://nusoft.fnal.gov/larsoft/doxsvn/html/

• Auto-generated documentation from markup
embedded in source comments

Documentation

101

“Source” view

http://nusoft.fnal.gov/larsoft/doxsvn/html/

Doxygen: http://nusoft.fnal.gov/larsoft/doxsvn/html/

• Auto-generated documentation from markup
embedded in source comments

• Pros:
– A significant fraction of code includes such comments
– Should always be up to date with the code you are

viewing
• Cons:

– Provides no high-level view or context
– Quality varies greatly due to absence of enforceable

standards or conventions

Documentation

102

http://nusoft.fnal.gov/larsoft/doxsvn/html/

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki

• Technical reference
• Issue tracker

LArSoft Redmine site

103

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki

• Technical reference
• Issue tracker

LArSoft Redmine site

104

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki

• Technical reference
• Issue tracker

LArSoft Redmine site

105

Report problems
Make requests
Ask questions
Make suggestions

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki

• Technical reference
• Issue tracker
• “Repositories” no longer used

– Everything is in GitHub

LArSoft Redmine site

106

https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki

LArSoft GitHub

107

https://github.com/LArSoft

https://github.com/LArSoft

LArSoft GitHub

108

https://github.com/LArSoft

Working with GitHub -
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Working_with_Github

In order to develop and contribute LArSoft code, you will need to have a personal
GitHub account.

● If you don't have one already, go to: https://github.com/join
○ Follow the instructions to create a new account. Make sure you either use a

username that people will easily recognize, or specify your real name, so that
people know who issued the pull request.

● If you have an account, use the "Sign in" dialog at https://github.com/login

Contributed code uses the pull request feature.

https://github.com/LArSoft
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Working_with_Github
https://github.com/join
https://github.com/login

LArSoft GitHub

109

Developers must initiate a pull-request for the specific change to be merged, since
most users will not have privilege to commit directly to the LArSoft repositories on
GitHub. In order to create a pull request, a person must first:

● Have a properly configured personal GitHub account
● Push the feature branch to the forked LArSoft repositories in their personal

GitHub account

Creating the pull request then triggers the workflow shown on the next page.

LArSoft GitHub - Overview of the pull request testing and approval workflow

110

https://larsoft.org/

• Organizational information about the
collaboration

– Governance structure
– Meeting notes

• High-level documentation
• Links to training information / sessions

LArSoft.org

111

https://larsoft.org/

Documentation: https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki
Monitoring app: http://lar-ci-history.fnal.gov/LarCI/app

• Drives both rapid turn-around CI testing and more comprehensive validation
workflows and testing

• Users can run tests locally prior to committing code, or launch jobs to look at
specified combinations of branches

LArSoft CI system

112

https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki
http://lar-ci-history.fnal.gov/LarCI/app

Documentation: https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki
Monitoring app: http://lar-ci-history.fnal.gov/LarCI/app

LArSoft CI system

113

lar_ci wiki page

https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki
http://lar-ci-history.fnal.gov/LarCI/app

Documentation: https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki
Monitoring app: http://lar-ci-history.fnal.gov/LarCI/app

LArSoft CI system

114

Monitoring app

Drill-down by experiment to
see test results at increasingly
fine detail

https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki
http://lar-ci-history.fnal.gov/LarCI/app

Documentation: https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki
Monitoring app: http://lar-ci-history.fnal.gov/LarCI/app

LArSoft CI system

115

Monitoring app

Drill-down by experiment to
see test results at increasingly
fine detail

https://cdcvs.fnal.gov/redmine/projects/lar_ci/wiki
http://lar-ci-history.fnal.gov/LarCI/app

Provides support for LArSoft (among many other software projects, e.g., art) via:

• User support
• Technical expertise, problem solving
• Software solutions
• Architecture maintenance and development
• LArSoft work plan execution
• Release management
• Project management

SciSoft support team

116

Team members:

SciSoft support team

117

● Developers / experts / user support
○ Vito di Benedetto
○ Patrick Gartung
○ Chris Green
○ Robert Hatcher

● Leaders
○ Kyle Knoepfel
○ Erica Snider

● LArSoft project technical lead
○ Erica Snider

○ Saba Sehrish
○ Mike Wang

Email to scisoft-team@fnal.gov

mailto:scisoft-team@fnal.gov

The end

118

